Keytar Power Switch

I got fed up with the power cables sticking out of the side of the case, so I decided to make the power switch a more integral part of the build. Also, I didn’t like the gaping hole in the case.

There were two power switches, one for the deck itself, and one for powering the USB hub. I modified this one for the hub, deciding to route it fully inside the case, even though that means I have to briefly open the tray to turn on the hub.

I also made this cable up for the main power to the Pi.

As part of this design process there was a lot of tinkering and iterating.

And, I mean a LOT of tinkering. This is what I ended up with:

This image has an empty alt attribute; its file name is 20200516_103531.jpg

I knew I liked the idea of a red safety cover for the switch, but those are designed to turn a regular flip switch off when they closed. I needed a way to have a cover a switch while the thing was still powered on. I found the switch that would fit through the hole of the safety cover (after a little… modification with the deburring tool), and figured out how to design the little bugger to hole the actual switch, the switch cover, allow for proper free movement of the switch to function, and attach the switch neatly and securely to the case. I’ll spare you the iterations, but it took a while, and I think I got it to look pretty good and hold well. I like that I have a red power button under a red safety cover now. It just feels… right.

Sanctum Upgrades: Surge Protection

I’ve been dealing with a lot of thunderstorms lately, and got kinda fed up with my old habit of unplugging my sensitive electronics every time they come through, so I decided to finish fully surge-protecting my primary workstation and my router.

The internet connection required a few changes while I was at it. Here it was before.

I kinda dropped a whiteboard on the coax connector a while back, and was worried that it might have been damaged a bit in the process, so I replaced it just in case. Also, the coax cable stuck out of the wall, taking up a bit more floorspace than necessary, so I replace the cable with a shorter yet more flexible one and installed a 90 degree connector. I added an in-line surge protector on the coax cable, and replaced the wall surge protector (I wanted to use the other one somewhere else).

Now it doesn’t stick out as far, and I don’t have to worry about surges going through the router. Though, I guess I kinda went a little redundant on protecting the PC from power surges on the internet connection, as the the ethernet cable was already routed through a surge protector. Oh well, there is no such thing as overkill.

While I was making some changes, I also replaced the old surge protectors for the computer’s peripherals. Here are the old ones:

And here is one of the new ones. I’ve installed them on the walls to be neater. Hopefully the command strips will hold in this configuration.

My Favorite Technomancers in Fiction

Clarke’s Third Law: “Any sufficiently advanced technology is indistinguishable from magic.”

These characters in fiction epitomize this concept with their devices… in some cases being able to defeat things that normally required magic through their technology.

The Doctor (Doctor Who) – The guy solves many problems through technobabble, a “not-a-magic-wand” sonic screwdriver, and the TARDIS, a ship that travels through time and space, can make pretty much anything… and is bigger on the inside.

Ghostbusters (Ghostbusters franchise, duh) – In many other franchises, you have to have access to divine or supernatural powers to get rid of ghosts. These guys and gals build their own energy weapons capable of defeating ghosts, capturing some, and blowing up others. Awesome.

Iron Man (Marvel) – Tony Stark builds a suit of armor that allows him to fly, shoot energy beams from his hands, and do many other things that would be described as magic by previous generations, so I’m gonna count it.

Seto Kaiba (Yu-Gi-Oh) – This guy recreates the feel of ancient magical games with holographic projections, and in Dark Side of Dimensions even defeats “unstoppable” ancient magic through the power of his own technology. Badass.

Technomage Elric (Babylon 5) – This is the main technomage we meet in the Babylon 5 series. They purposely and explicitly use technology to create what would have been considered magic.

Warp Core Table Lamp

I’ve been wanting to build one of these for years, since before I got my first 3D printer, but I had so many problems with my 3D printers on long prints that I never got around to it.

Well, I’m fixing that now!

For one thing, the models for this have been redone drastically, increasing quality and reducing the print time.

Here’s the original: Warp Core Table Lamp

And here’s a redone version: 1701-D Warp Core (HI-RESOLUTION)

It’s also been downsized slightly, which makes the large parts fit on my smaller 3D printer.

For another, I’ve been fixing my 3D printers, and have had all this monitored print time available recently, so I’ve had no excuse NOT to make it anymore. So, I’ve been spitting out the parts for this thing lately.

Those translucent sections were much larger and more complex in the original model, each made of 5 toroids. Also, many pieces were replaced with metal rods that I was able to order on Amazon, I just have to cut them down to the correct length.

So… yet another project ongoing! I’ve gotten the tools and hopefully all the parts I need, so when I have some more time (I’ve been kinda busy) I’ll be:

  1. Writing the arduino code for controlling it
  2. Testing the code on a breadboard
  3. Soldering an absurd number of connections
  4. Cutting a bunch of metal rods with a reciprocating saw
  5. Filing some metal bits to safer edges
  6. Assembling the lamp

Sanctum Upgrades: Resurrecting the Colido DIY, Part 3

There were a lot of maintenance items that I ended up trying/doing, and I don’t feel like dragging this out any further, so I’m trying to condense the rest of what I did here.

Smooth Motion Maintenance:

This is a combination of some general maintenance items. I replaced all the bearings I was able to. This included the ones on the hot end carriage and on the vertical axis, but I had no way to easily swap out the ones on the print bed carriage.

While I’m thinking about it, remember that if you have to swap out bearings, put the thicker white lithium grease on the inside of the new bearing before putting it on the rod, to make sure the bearing gets fully lubricated. When you’ve finished assembling, make sure to move the bearings back and forth several times to make sure the lubrication spreads within the bearing evenly.

While doing that, I cleaned and lubricated all the linear rods and z-axis screws. I also replaced all the timing belts. I think this has reduced the friction greatly, and improved the smoothness/ease of motion.

Here’s one of the bearings I replaced on the extruder carriage.

Stepped Spool Holder:

As I discovered in the previous post in this series, the smooth spool holder allowed the spools to slide off, and I remembered that there was a stepped variant. I printed off one of those, assembled it… and it works much better! The steps keep the spools on top of the printer, despite the vibrations from the printer’s motion in certain circumstances.

This spool holder allows for quicker filament changes, without having to fiddle with an exterior spool holder. This is especially helpful as the original spool holder had required disassembling the holder each time I wanted to change filaments, and clamping to keep it from moving in the way of the print bed.

Hot End Replacement:

I was having some temperature fluctuations on the hot end, at least in what temperatures were registering. I’m so glad I started using Octoprint and could monitor temperature telemetry!

Based on talking with other people about it, and looking at the symptoms, it appeared to be something wrong with the thermistor and/or the wire connecting it to the control board. I was considering replacing the thermistor, but I was having difficulty finding a compatible one. I was, however, able to find a replacement hot end from the manufacturer, which would give me the added benefit of replacing the nozzle and lining tube at the same time, so I swapped out the whole assembly.

It was a straight up swap for identical parts, though it was tedious because of the cable wrapping that had to be removed in order to remove the old wires and include the new ones.

This stuff is necessary to reduce wear on the wires, but annoying to implement.

Cooling Fan Addition:

The major issue I was seeing with overhangs and general print quality was an overheating issue. There are a couple ways to address aspects of this: adding a silicone sock to reduce reheating issues, and/or adding a cooling fan to make the top surfaces cool more quickly. For now I’ve only implemented the latter option. I’ve been unable to find a compatible silicone sock so far.

thedayowl on Thingiverse designed a fan duct for a blower fan to be added to the carriage. You can find it here. I printed it out, ordered the other parts, and attached it to the assembly.

The trickiest bit was figuring out how I was supposed to connect the power. There’s an open connection on the board that provides sufficient power continuously. You can’t control it through the software, but I don’t see the harm in letting that small blower run continuously.

By the way, the connector on the board is NOT the standard connector it looks like, and I’m not sure what it is, so I made do with a dupont connector.

Gear Grinding/Nozzle Turnoff/Layer Shift

There was an intermittent issue that I’ve had with the stepper motors (particularly on the y axis, but occasionally on the x axis) moving unexpectedly, often running into the end stop and grinding the belt. When that happened, the hot end would turn off (causing the filament to stop flowing and just grind), and the printer would lose track of the hot end’s location (causing massive layer shifts), both of which ruined the print. I attacked this from a few different angles. Replacing the belts earlier in the process was part of one of the attempts, as I’ve had issues with slippage before, as well as just part of replacing older parts.

Stepper Motor Driver Tweaking:

Based on a recommendation I’ve gotten from some other people, I got a multimeter to check the stepper motor drivers, and a ceramic screwdriver to adjust the voltage. I’ve tried tweaking it a few times, but I didn’t really see any improvement.

Power Supply Replacement:

Upon other recommendations, I decided to try getting a replacement power supply. I’ve been told that the one that came with the printer is considered a really reliable brand, but since I’ve swapped out the power supply the printer seems to have stopped having that intermittent failure.

Finished

With all that finished… WOW. This older printer can now print better than my newer one! I now do all my more precise prints on this printer.

For a point of comparison, here’s the before photo of the temperature towers printed on this printer.

Absolute rubbish!

And here’s the miniatures that I’m able to print now! I’ve been running it a lot lately building up my miniatures collection.

Thoughts/notes for the future:

If I run into issues on the hotend again, I think I may do what I’ve seen others do and switch to a more industry standard hotend, though that’d be an… interesting conversion process. It would make finding replacement parts a lot easier, though!

I think there is a little bit of a bed level issue, still, and I’m not sure how much is in the tramming and how much is in the metal bed I placed on it. It may be related to how I mounted the bed with command strips.

For now I’m printing mostly small items. When I print larger items I get a bit of warping, so I think I need to remember to implement brims on the larger ones. I’m not sure how much is due to the unheated bed, and how much from variations in leveling. And no, I’m not considering adding a heated bed anytime soon. From what I’ve read, trying to do a DIY heated bed increases the fire risk more than I am comfortable with.

At one point I was considering replacing the z-axis screws with thicker ones, but the manufacturer used a nonstandard interface piece (it had 3 holes instead of the standard 4), so I couldn’t easily swap them out without also having to print and install completely new blocks at the ends. This is the kind of nonsense that makes me want to scratch build a printer on my own down the line, with an eye for maintenance and using industry standard parts.

Anyway, I guess I’ve got to start working on the other printer soon to bring up the quality level on it! It feels kinda weird that my older and larger printer is currently better at producing the smaller miniatures. I need to address this imbalance, so I can print smaller things on the smaller printer and larger things on the larger printer.

Sanctum Upgrades: New Pages for New Maker Workflows

My recent work on projects has required me to expand my options as a maker, adding new setups to my arsenal. Instead of letting these get lost in the flow of posts, I’ve added them as pages.

The main page is here, and also on the left side of every page:
Manufacturing Setups

I’ve added two new setups, for spraypainting and electronics work, and I’ve also crosslinked my existing page for 3D printing equipment.

Keytar Accents and Details

After finishing the keytar’s primer/color coat, I started prepping to do the details. As mentioned in a previous post, I was using Rub’n’Buff to give a bit of a metallic finish to the details.

Like with any good detail work (unless perhaps you have a LOT more skill and confidence than I do), I prepped the sections I was going to accent by taping around the parts I wanted to add color too. This helps keep the transition between colors sharper and cleaner. It used a lot of painter’s tape and prep time, but it was worth it. I also taped around the feet on the backside of the case to protect the areas around them when sanding. I… kinda forgot to tape over them before painting, and I needed to remove the paint so that the rubber feet would work properly.

It can take a while to tape around these to my satisfaction, as I’m trying to preserve a lot of detail in the process and not look sloppy. It took a lot of small bits of tape, and some work with an exacto blade. As an example of what I’m talking about, here’s how I had taped up the universal greeblie for painting. I had to be careful to tape around all those curves.

Once I finished taping the pieces up, and through a bit of trial and error, I was able to add something of a metallic finish that I had wanted. Here it is, before and after removing the tape (there may have been an extra application of Rub’N’Buff between photos). Note the amount of extra finish that was on the protective tape that didn’t end up on the surrounding black paint.

Finished with the accents, I started decorating with stickers. I had a bit of trouble with some of them, and I’m not entirely happy with the results but, eh, you live and learn. I know a bit more of what to expect the next time I do something similar. The vinyl sticker with my logo was the hardest one to put in.

The others took a bit of planning for placement, but weren’t so bad to apply, as each sticker was a single solid piece.

After applying all that, I had to apply some more paint. A few coats of glossy clear enamel to protect everything and seal it in, and a coat of matte clear paint to knock the gloss off. The results were alright, but I think if I were to redo this I would use a painted on clear lacquer, for a thicker, stronger coat. Some of the stickers don’t adhere as well as they should, and the spray painted clear coat doesn’t force it down like a lacquer might. I also noticed that with some hard objects it was easy to accidentally add marks to the surface of the paint, it’s something about the clear coats, but at this point I don’t want to worry with attempting a fix, and I’ll just call it “built-in weathering.”

Oh, before I forget, one of my lessons learned I would like to share.

DO NOT LET YOUR SPRAYPAINTED PLA PLASTIC PARTS DRY IN THE SUN. I started getting warping in one of my parts because I didn’t realize it was in direct sunlight, and I had to try an emergency repair with clamping while it was still flexible.

Here’s all the parts after stickering and painting. Oh, and I was painting a door opening tool at the same time as well.

It was around this point that I decided that I wanted to make sure I finished the USB hub add-on and a more integrated power switch before reassembling it, but that’s a topic for another post.

Let me know if you have any questions about the processes in these posts. I’m trying to write these over a month after the fact, and have been limiting some of the details in order to progress forward.

Sanctum Upgrades: Rotating Miniatures Display

I decided that I wanted to be able to display and easily access my collection of D&D miniatures. I came across a concept for reusing empty filament spools. Their version had faceplates, but for the moment I just want to at least get this thing functional. I stacked my empty spools, and connected them with some tacky material.

It’s convenient, showing off my minis for ease of access… but the back half is hard to see and reach. This is where the turntable comes in. I had tried one version where it was a plate sitting on a single skateboard bearing, but that was too brittle and the whole thing wobbled (the spools make it top-heavy). So, I switched to this design:

You can find the original turntable design on Thingiverse here:

Manual Turntable by printedprops

I didn’t need the top plate, seeing as the bottom spool provides a surface to rotate on, but the bottom plate does provide a much more stable base to rotate the entire tower on.

I may end up upgrading the tower to have the nice stonework facings here, but so far I don’t want to give up the printer runtime for it. It was the inspiration for this project, though.

At any rate, I now have a way of seeing what minis I have, instead of having to dig through plastic containers. Maybe post-quarantine I can use it for hosting some RPGs.